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Abstract Consider a set of agents (receivers) whose payoffs depend on an underlying state of
the world as well as each other’s actions. Suppose that a designer (sender) commits
to a signaling mechanism which reveals payoff-relevant signals to agents when the
state is realized. The availability of such signals influences the agents’ actions, and
by choosing the signaling mechanism appropriately the designer can induce a desired
outcome. Information design studies signaling mechanisms that maximize the pay-
off of the designer. In this paper, we first present the classical information design
framework and discuss different approaches for characterizing the optimal information
structures. We then discuss various applications in the recent operations literature.
The applications include signaling (i) content/product quality in networked systems,
(ii) product availability in revenue management settings, and (iii) seller quality in two-
sided markets. Finally, we present recent work that discusses the design of optimal
information structures when some of the key assumptions in the classical information
design problems (which may not hold in operational settings of interest) are relaxed.

Keywords Information design, persuasion, persuasion in networks.

1. Introduction

Information design studies how a designer (or sender) can influence the actions taken by
agents (or receivers) by committing to a mechanism that reveals signals about a payoff
relevant state once the state is realized. Since the seminal papers [10, 30, 38], information
design has become a very active research area.

Information is a natural lever in many important operational settings. Review systems
provide useful information to consumers about various service operations, ranging from
restaurants to hospitals. Ride-sharing platforms signal rider demand to their drivers and on-
demand labor platforms signal freelancer quality and supply to potential employers. Many
applications provide real-time traffic information to their users, which impacts the routes
individuals take in transportation networks. E-commerce platforms often ask the buyers to
rate third-party sellers they transact with, and make these ratings available to future buyers.
Recent work has leveraged ideas from information design to study how information can be
used to induce desired outcomes in different operational settings.

The purpose of this paper is three-fold. First, we present the key approaches from the
literature that can be used to characterize the optimal information structures in a variety
of information design problems. Second, we cover some of the recent work from operations
that applies information design ideas in different operational settings. Third, we highlight
some assumptions made in the classical information design formulations, which may not
hold in important operational settings. We then discuss the recent work that sheds light on
the design of optimal information structures when these assumptions are relaxed.

To understand the gist of information design, let us start with a simple example adapted
from the “courtroom” example of [30]. A firm faces a single buyer who decides whether to
adopt its new product. The product may be a good match with the buyer or not (which
corresponds to the state of the world). The payoffs are normalized so that if the buyer takes
the “correct” action (i.e., purchases the product when the match is good, and does not
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2 Information Design in Operations

purchase when the match is poor) her payoff is one. Otherwise, her payoff is zero. The firm
gets a payoff of one when the product is sold and zero otherwise.

A priori the quality of the match is unknown to the firm and the buyer. They share a
common prior belief which suggests that the match is good with probability 0.3. The firm
can choose a (signaling) mechanism that provides informative signals to the buyer about
the product. For instance, it can provide free trials (where the buyer can explore a limited
subset of the product capabilities) and/or highlight some features of the product with factual
advertising.

If the firm does not reveal any information about the product, then the buyer is better
off not purchasing it, which yields a payoff of zero to the firm. If the firm chooses to reveal
the information about the product fully (e.g., through a long trial of the product with full
capabilities) then, the buyer purchases the product with probability 0.3 – whenever the
match is good. Suppose that the firm uses a trial/advertising campaign which reveals limited
information about the match and suggests that the match is good (i) with probability 1
when it is indeed good, and (ii) with probability 3/7 when it is not. A mechanism of this sort
makes the buyer indifferent between purchasing and not purchasing the product whenever
she receives a signal indicating that the match is good. This guarantees that the product
will be sold with probability 0.6 – which is the maximum achievable for the setting described
here. Thus, the firm can strictly improve its expected payoff by designing the mechanism
appropriately.

Information design tries to address how to design the information structures in a way that
maximizes the designer’s payoffs in general environments. Often, we focus on problems where
the designer’s and the agents’ payoffs depend on the receivers’ actions and an underlying
state. The designer, before observing the state, commits to a mechanism (or information
structure) that reveals signals once the state is realized. The optimal mechanism is the one
that maximizes the designer’s payoff.

Here, the commitment assumption plays an important role and makes the environment
different from the cheap talk setting. It removes ambiguity on how the receivers interpret
the designer’s messages, and in a way simplifies the design problem. While commitment may
be a strong assumption in some settings, it is reasonable in other settings. For instance, in
some settings (e.g., limited product trials) the designer’s choice of the mechanism as well
as the realizations of the signals (e.g., how much the receiver enjoys the features included
in the trial) are readily observable to the receiver. Reputation effects, which are relevant in
many operational settings, could also play a role. A platform revealing information about the
(possibly low) qualities of sellers to the buyers, considers not only the short term loss of sales,
but also its long term reputation. [6, 36] formalize some of these ideas and illustrate how
repeated interaction of a long-lived sender with receivers can restore the commitment payoffs.
In many platforms and review systems, choosing an algorithm (which is only infrequently
modified) that reveals signals to users can be viewed as commitment to a mechanism as
well. Yet in other settings, there are legal or contractual constraints that make commitment
feasible (see, e.g., [30]).

As highlighted in [5] information design perspective provides a useful benchmark even
when there is not a literal information designer. In particular, characterizing the set of out-
comes an information designer can induce, equivalently characterizes the set of all outcomes
that emerge under some information structure. For instance, consider a setting where the
agents have access to some exogenous signals about the state and focus on the maximum
payoff that will be induced under these signals. The best payoff a designer can achieve
(using the optimal information structure) upper bounds the aforementioned payoff. Thus,
the characterization of optimal information structures and the corresponding payoffs yields
an important benchmark that is relevant even in the absence of an information designer.

The recent literature has studied a variety of operational problems through the lens of
information design. The applications of information design ideas have emerged in (i) classical
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queueing settings, (ii) revenue management, (iii) social networks, (iv) platform operations,
among others. In one of the earliest applications of information design in operations, [35]
studies how a designer can reveal informative signals on the queue length to influence cus-
tomers’ decisions on whether to join a queue. The objective of the designer is to maximize
the revenue collected from the customers who join. [2] builds on this model to study the
welfare maximization problem in a setting where different types of customers who have dif-
ferent needs decide whether to join the queue. [17, 33, 34] study complementary revenue
management settings. [17] and [34] explore how a seller can signal product availability to
persuade buyers to purchase the product earlier (and at a higher price). [33] explores how a
seller can disclose information about historical sales to convince customers who arrive over
time to purchase the product. [16, 12] study the applications of information design ideas in
the context of social and economic networks. [16] considers engagement decisions of agents
with the available content on social media, and designs signaling mechanisms that reveal
informative signals about the accuracy of the content. [12] studies how appropriate pub-
lic reviews/signaling mechanisms could shape agents’ adoption decisions of a product that
exhibits local network externalities. Different aspects of platform operations have been stud-
ied by using tools from information design. [37] studies how platforms can induce exploration
by provisioning information appropriately to their users. In [39], motivated by ride-sharing
problems, the authors study how a platform can improve the outcome of a spatial resource
competition and increase welfare by using appropriate public or private signaling mecha-
nisms. [29] explores how a platform managing a two-sided market can signal the quality
of the sellers to increase the total transaction value in the market. [7] studies a setting
where both sides of the market endogenously decide whether to participate, and the authors
shed light on the supply-side benefits of information provision by the platform managing
this market. [26] studies the relationship between a platform and a third-party seller that
does not know consumer demand for its product but can use dynamic pricing to learn from
consumer purchase decisions. To induce the seller to set platform-preferred prices, the plat-
form commits to an initial information structure that discloses (some) information about
demand and then takes costly actions to constrain the seller’s ability to learn from purchase
decisions. The paper explores how the seller’s ability to learn after the initial information
disclosure impacts the optimal information structure. Applications in other new domains
are also explored by the recent literature. One interesting example is [1], where the authors
explore how a public health agency can signal the severity of a pandemic to induce agents
to undertake costly measures.

Thus far, many papers in the literature focused on stylized theoretical models and devel-
oped guiding principles for the design of information provision schemes that are relevant
in different operational settings. They also illustrated how some insights on the value of
operational levers (such as pricing) may change when information is used as another lever
(see the related discussion in Section 3.2). Going forward, the information design ideas are
likely to find fruitful applications in many other operational settings. We comment on some
future directions in our concluding remarks.

In this paper, we first focus on an abstract setting and present the information design
problem as well as various approaches that can be used for obtaining optimal information
structures (Section 2). Then, in Section 3, we discuss a few papers that develop applications
of information design in the recent operations literature. In Section 4, we discuss some
key assumptions that are imposed in the classical information design settings and present
recent work that sheds light on how the design of optimal mechanisms changes when these
assumptions do not hold. We conclude in Section 5.

2. Different Approaches to Information Design

In this section, we review different ideas from the literature that are useful for the solutions
of information design problems. We start by introducing the notation that will be used in
the remainder of the paper.
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The state of the world belongs to a set T ⊂ R. We use T to denote the random state
and t to denote either the realization of the state or a dummy state t ∈ T . There is a
set of receivers (agents) V . The payoff of receiver i, denoted by ui(ai, a−i, t), is a function
of her action ai (which belongs to a set of possible actions Ai), the remaining receivers’
actions a−i = {aj}j∈V \{i}, and the state realization T = t. The receivers do not observe the
state realization prior to choosing their actions. An information designer’s payoff ν(ai, a−i, t)
depends on the actions chosen by the receivers and possibly on the state. The designer and
the agents share a common prior on the state given by the (cumulative) distribution function
F : T → [0,1]. We let1 F−1(q) = inf{t∈ T |F (t)≥ q}.

Before the state is realized the designer commits to a mechanism (or information structure)
π which maps each state realization (possibly after randomization) to a signal realization.
We denote by Si the random variable that represents receiver i’s signal. Once the state
is realized, the designer’s mechanism shares the realization of Si with receiver i. Then,
the receivers take actions to maximize their expected payoffs (conditional on the observed
signal). Formally, given the designer’s mechanism, the agents play a game of incomplete
information. In this game, agent i’s strategy xi is a mapping from the possible realizations
of Si to an action in Ai. We focus on the Bayesian Nash equilibria of this game, and denote
the set of these equilibria by Q. If there are multiple Bayesian Nash equilibria we break ties
in favor of the equilibrium that maximizes the designer’s payoff – or focus on the sender-
preferred equilibrium. By designing her mechanism appropriately, the designer can influence
the equilibria of the game among the agents and improve her own payoff.

Let Π denote the set of feasible mechanisms of the designer. There are two important
cases to consider. In the first one the mechanisms in Π are not restricted, and only mild
measurability assumptions are made on the mechanisms (i.e., for all i∈ V signal Si needs to
be measurable). In the second one, attention is restricted to public signaling mechanisms,
i.e., in addition to measurability we require Si = S for all i ∈ V . The designer’s problem is
to choose π ∈Π that maximizes her expected payoff. This problem can mathematically be
stated as follows: maxπ∈Π max(xi,x−i)∈QE[ν(xi(Si), x−i(S−i), T )].

Note that the set of feasible mechanisms is very rich, and in general the dependence of the
optimal mechanism on the prior belief and the designer’s/agents’ payoffs is quite nontriv-
ial. Partly due to these features, information design problems can become algorithmically
challenging. We next outline different ideas for the solution of information design problems.
In Section 2.1, we discuss the concavification idea, which provides an elegant geometric
approach for understanding when the designer can use information as a lever to improve
her payoff. Section 2.2 provides a formulation in terms of Bayes correlated equilibria (BCE),
which paves the way for natural optimization formulations for the characterization of opti-
mal information structures in the presence of multiple receivers. The approaches of these two
subsections are useful when the designer’s/agents’ payoffs have a general dependence on the
posterior distributions induced by the signals. On the other hand, the optimization formula-
tions obtained from the BCE concept involve a decision variable for each state and profile of
agents’ actions which may lead to algorithmic challenges. In Sections 2.3 – 2.5 we focus on
settings where the designer’s payoff depends only on the induced posterior mean (as opposed
to the entire posterior distribution). This dependence enables alternative formulations that
exploit the aforementioned structure. Section 2.3 formulates the information design problem
as an optimization problem over a set of convex functions, whereas Section 2.4 provides an
infinite-dimensional optimization formulation and leverages ideas from duality. Section 2.5
studies settings where the designer’s payoff is a step function of the induced posterior mean,
and provides a tractable (finite-dimensional) convex optimization formulation for obtaining
the optimal information structure. We illustrate the last approach in Section 3.1.

1 Observe that for q ∈ [0,1] and strictly increasing F (·), this definition is consistent with the inverse of the
cumulative distribution function.
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2.1. Concavification

The seminal paper [30] presents the Bayesian Persuasion framework. The baseline model
focuses on a setting with a single receiver and finitely many states (hence F is atomic)
– though the results are then extended to richer environments. The designer chooses a
mechanism with finitely many possible signal realizations to influence the receiver’s decisions.

Given the mechanism of the designer, the receiver chooses an expected payoff maximizing
strategy. It is without loss of optimality to restrict attention to straightforward mecha-
nisms where the designer recommends the receiver to take an action, and the mechanism
is designed so that it is optimal for the receiver to follow this recommendation. The idea
behind straightforwardness is similar to the revelation principle in mechanism design.

Recall that F denotes the prior belief about the state. Each signal realization S = s induces
a posterior belief in ∆(T ). The mechanism chosen by the designer, therefore, induces a
distribution of posterior beliefs τ ∈∆(∆(T )). Observe that the latter distribution needs to
be consistent with prior beliefs. In particular, it needs to be Bayes Plausible:∑

µ∈Supp(τ)

µτ(µ) = F,

where Supp(τ) is the (finite) set of beliefs in the support of τ . For a given belief µ∈∆(T ),
denote the payoff of the designer by

ν̂(µ) = Eµ[ν(a(µ), T )],

where with some abuse of notation we let a(µ) denote the action that maximizes the
receiver’s payoff when her belief is µ (and if there are multiple such actions once again we
break ties in favor of the designer).

A fundamental question in information design is when the designer benefits from an
appropriate choice of the information structure. [30] answers this question through the idea
of concavification. Let ν̂c denote the concave closure of ν̂, i.e.,

ν̂c(µ) = sup{z|(µ, z)∈ co(ν̂)},

where co(ν̂) denotes the convex hull of the graph of ν̂. [30] establishes that the designer
can improve her payoff by choosing an appropriate information structure (or benefits from
persuasion) if and only if:

ν̂c(F )> ν̂(F ).

That is, to see whether the designer benefits from persuasion it suffices to check whether the
payoff function ν̂ and its closure ν̂c match at the prior belief F . Note that this immediately
implies that if ν̂ is concave, the designer does not benefit from persuasion for any prior.
Conversely, when ν̂ is convex and not concave, the designer benefits from persuasion for
every (non-degenerate) prior.

It can also be shown that the payoff of the designer under the optimal mechanism is
exactly ν̂c(F ). Moreover, in some special cases, it is possible to characterize ν̂c(·) explicitly,
and use this characterization to derive the beliefs the designer’s mechanism needs to induce
to maximize her payoff.

For instance, consider the example from the introduction. In this example, there are two
possible state realizations, and the distributions can be equivalently represented in terms
of the probability weight of one of them. Moreover, the buyer finds it optimal to adopt the
product if she believes that the probability of the product being a good match is greater
than 0.5. Thus, using the aforementioned alternative representation of the distributions, the
designer’s payoff can be expressed as a step function of the belief (with a cutoff at 0.5).
The concavification approach establishes that when the prior probability of the product
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being a good match is less than 0.5, the designer can improve her payoff by employing an
appropriately chosen information structure. Moreover, given its simple structure, in this
example it is possible to explicitly compute the concave closure of the designer’s payoff and
the optimal information structure (see [30] for details).

In an important class of persuasion problems, the designer’s payoff depends on the
expected state. That is, there is a function ν̃ such that ν̃(Eµ[T ]) = ν̂(µ). The concavification
idea applies in this setting as well, and it can be shown that the designer benefits from
persuasion if and only if ν̃c(EF [T ])> ν̃(EF [T ]), where ν̃c is the concave closure of ν̃. It is
natural to expect that ν̃c(EF [T ]) is the designer’s payoff under an optimal mechanism. But
this is no longer the case, and the aforementioned quantity is just an upper bound.

2.2. Bayes Correlated Equilibrium

An alternative approach to information design was provided in [4, 5]. Consider once again a
setting with finitely many states, receivers, and actions. Suppose that the designer commits
to a decision rule σ, which maps each possible state t∈ T to a distribution of action profiles
(i.e., a member of ∆(A), where A=×i∈VAi). Given the realization of the state, the designer
makes a recommendation to each agent consistent with the decision rule. The decision rule
is required to be obedient, i.e., given her action recommendation ai, agent i finds it optimal
to take action i. Thus, given an obedient decision rule of the designer, after only observing
the designer’s action recommendation for her, each receiver follows this recommendation.
A decision rule satisfying obedience is referred to as a Bayes correlated equilibrium (BCE).
Using a revelation principle argument (and similar to straightforwardness above), it can be
shown that there exists a mechanism that gives rise to a decision rule in a Bayesian Nash
equilibrium if and only if the decision rule is obedient (and hence is a BCE).

The set of all possible obedient decision rules admits a characterization in terms of a
set of linear inequalities. To see this, first recall the concept of correlated equilibrium from
game theory. Consider a setting where there is no state that impacts agents’ payoffs. A
distribution σ ∈∆(A) is a correlated equilibrium if for each i and ai ∈Ai, we have∑

a−i∈A−i

ui(ai, a−i)σ(ai, a−i)≥
∑

a−i∈A−i

ui(a
′
i, a−i)σ(ai, a−i), ∀a′i ∈Ai.

Here we suppress the dependence of the payoffs on t, since there is no state. Intuitively, if
the designer randomly draws an action profile a= (ai, a−i) (from distribution σ), and shares
with each agent the corresponding component of a, then agent i maximizes her payoff by
taking action ai. Note that in this setting, the uncertainty for agent i stems from the random
draw of the action profile (and in particular she does not observe the actions a−i prior to
choosing her action). Suppose next that a state impacts agents’ payoffs, and let f(t) denote
the probability that the state is t (i.e., f is the probability mass function associated with the
cumulative distribution function F ). Let σ be the decision rule and σ(ai, a−i|t) denote the
probability that the draw of the strategy profile is (ai, a−i) when the state is t. The Bayes
correlated equilibria (or the set of obedient decision rules) are characterized in a similar
fashion in terms of the following inequalities:∑

a−i∈A−i,t∈T
ui(ai, a−i, t)σ(ai, a−i|t)f(t)≥

∑
a−i∈A−i,t∈T

ui(a
′
i, a−i, t)σ(ai, a−i|t)f(t), ∀a′i ∈Ai.

(1)

Also observe that the designer’s expected payoff under this decision rule is given by:∑
ai∈Ai,a−i∈A−i,t∈T

ν(ai, a−i, t)σ(ai, a−i, t)f(t). (2)
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Thus, it follows that an optimal information structure can be obtained by searching over
decision rules σ that satisfy (1) and maximize (2).

A few points about this approach are useful to highlight. First, it establishes that to obtain
an optimal information structure, it suffices to solve a linear program (with decision variables
{σ(a|t)}a∈A,t∈T ). For instance, the optimal information structure for the motivating example
from the introduction could be easily obtained by solving such a linear program. On the
other hand, the number of decision variables is exponential in the number of agents and this
could limit the applicability of the approach. Moreover, if the state belongs to a continuum,
then this will be an infinite-dimensional linear program. Finally, imposing side constraints
is not straightforward. For instance, suppose that the designer is restricted to using public
signals. Then, each agent knows the information the others have as well. Thus, (1) no longer
characterizes the set of obedient decision rules and a different characterization is needed.
That said, in addition to its conceptual simplicity, the formulation in this subsection is also
a computationally useful tool when there is a small number of agents, the state belongs to
a finite set, and the designer can send different signals to different agents.

2.3. Rothschild–Stiglitz Approach

In an important class of information design problems, the receivers’ payoffs depend on the
posterior mean induced by the designer’s (public) signal (as opposed to the entire distribu-
tion) and the designer’s payoff depends only on the actions chosen by the receivers. In this
case, the designer’s payoff for a signal realization can be expressed as a function of only the
corresponding posterior mean. Moreover, the designer’s expected payoff can be explicitly
characterized in terms of the distribution of the posterior means induced by her mechanism.
[24] focuses on such settings, and assumes that the state belongs to [0,1] and there is a
single receiver who chooses her action from a finite set.

Given a mechanism π, let Gπ denote the distribution of the posterior means induced by
this mechanism. Associate a function cπ(x) =

∫ x
0
Gπ(t)dt with each such mechanism. There

are two extreme cases to consider: π = π is the uninformative mechanism and π = π̄ is the
mechanism that completely reveals the state. [24] argues that the function cπ associated
with any mechanism π is convex and satisfies

cπ̄(x)≥ cπ(x)≥ cπ(x), x∈ [0,1]. (3)

Conversely, for any convex function cπ satisfying (3), there is a mechanism π that induces
it. However, these observations allow for an alternative formulation of the designer’s problem.
The designer can optimize over the convex functions cπ that satisfy (3) and then she can
construct a mechanism that supports this optimal solution.

When the action space is relatively simple (e.g., binary or small number of actions),
this approach yields an elegant geometric way of characterizing the optimal information
structures. When the action space is more complicated, it becomes less clear how to find an
optimal mechanism by searching over convex functions that satisfy (3).

2.4. Ideas from Infinite-dimensional Optimization

[21] also focuses on settings where the designer’s payoff can be expressed as a function of the
posterior mean her signals induce. The authors do not explicitly specify a receiver (hence
they do not make assumptions such as a finite action set for the receiver). Instead they focus
on an abstract setting where the designer’s payoff is ν̃(x) when the induced posterior mean
is x, for some function ν̃. Given such a payoff function, the authors formulate the designer’s
problem as

max
G

∫ 1

0

ν̃(x)dG(x) (4)

subject to the constraint that the prior F is a mean-preserving spread of G.
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The authors provide an interpretation of this problem as characterizing the Walrasian
equilibria of a “persuasion economy”. Note that without any further restriction, the problem
above can be viewed as an infinite-dimensional optimization problem. The optimal solution
admits a dual characterization, which is used to obtain the welfare theorems for the afore-
mentioned economy. The equilibrium conditions (or dual characterizations) can be used to
verify if a feasible solution in the designer’s problem is indeed optimal. This is especially
helpful in special cases (e.g., settings with binary actions), where it is easy to guess the
structure of the optimal mechanism. However, it is less clear how to obtain the optimal
mechanism in a tractable way in general environments.

2.5. A Reduced-form Approach

In this section, we assume that the designer’s payoff is a step function of the induced
posterior mean, and present an approach due to [11] and [14], which enables a tractable
characterization of optimal mechanisms through the solutions of finite-dimensional convex
programs. In many practical settings (including some of the examples discussed in Section 3)
the designer’s payoff has the aforementioned structure, making the approach broadly appli-
cable. This approach also reveals important structural properties of the optimal mechanisms.
In particular, it establishes that the signal realizations in an optimal mechanism correspond
to the steps of the underlying step function. Moreover, the optimal mechanism partitions
the set of states and associates a partition element with each signal realization (or step of
the payoff function). Each partition element is a union of at most two subintervals of the
set of states. Once the state is realized the mechanism simply reveals to which partition
element the state belongs.

To see why a step function structure is important, consider a natural setting where the
receivers’ payoffs are affine in the state, and the sets of actions {Ai} are finite. Assume
that the state is absolutely continuous. Suppose that the designer is restricted to using
public signaling mechanisms and the designer’s payoff depends only on the profile of actions
a ∈ A=×i∈VAi chosen by the receivers. Hence, we suppress the dependence on the state
and denote the designer’s payoff by ν(a). It is not difficult to show that in such problems,
when the posterior mean of the state induced by the designer’s mechanism belongs to certain
subintervals of T , the receivers always take the same action (see Section 3.1 for an illustration
of this point in network games). The following result is adapted from [14]:

Lemma 1. Suppose that A is finite and ui(ai, a−i, t) is affine in t for all i ∈ V , a ∈ A.
Suppose further that for t∈ T , if a,a′ ∈A are pure Nash equilibria of the normal form game
with payoffs {ui(·, t)}, then there exists t′ ∈ T such that t′ 6= t, and for t′′ that is in between
t and t′ (i.e., t′′ such that t≤ t′′ ≤ t′ or t′ ≤ t′′ ≤ t) a and a′ continue to be Nash equilibria
of the normal form game with payoffs {ui(·, t′′)}.

Consider a public signaling mechanism with signal S. There exist cutoffs {bk}Kk=0 and
action profiles {ak ∈A}Kk=1 such that at the induced sender-preferred equilibrium:

(i) bk−1 < bk for k > 0, b0 = inf T , bK = supT ,
(ii) ak−1 6= ak for k > 0,

(iii) the receivers play action profile ak when E[T |S = s]∈ (bk−1, bk),
(iv) the receivers play action profile a′ ∈ arg maxa∈{ak,ak+1} ν(a) when E[T |S = s] = bk for

0<k <K.

Note that the assumption on pure Nash equilibria a,a′ ∈A is made for expositional simplic-
ity, and the result can be extended by explicitly handling the cases where this assumption
fails. If this assumption is relaxed, at the sender-preferred equilbiria the receivers can play
an action profile for a single posterior mean level (as opposed to an interval of posterior
mean levels). This assumption simply rules out such cases.

Electronic copy available at: https://ssrn.com/abstract=3666252



Information Design in Operations 9

[14] established this result under the assumption that there is a single receiver, but the
approach immediately generalizes to settings where there are multiple receivers. Because
the payoffs are affine in the state the receivers’ actions only depend on the induced poste-
rior mean. As the posterior mean increases the induced equilibrium outcome can change.
In the lemma, {bk} capture precisely the posterior mean levels at which the equilibrium
outcome changes, and ak captures the equilibrium outcome when the posterior mean is
strictly between bk−1 and bk. Note that when the posterior mean is bk or bk−1 there are
multiple equilibrium outcomes that can emerge in the game among the receivers, and we
break ties in favor of the sender-preferred one. We denote by Bk the interval where the
equilibrium outcome ak emerges, and note that it can be left- or right-closed and satis-
fies (bk−1, bk)⊂ Bk ⊂ [bk−1, bk]. This discussion implies that the designer’s payoff is a step
function ν̃ of the induced posterior mean where

ν̃(x) = rk = ν(ak) for x∈Bk, (5)

and rk ∈R denotes the reward associated with the kth step.
In the remainder of this section, we focus on such payoffs. Specifically, we assume that

there are parameters {rk}Kk=1 and subsets of states {Bk}Kk=1 such that when the posterior
mean is in Bk, the designer’s payoff is rk. Furthermore, there is an increasing sequence of
cutoffs {bk}Kk=0 with b0 = inf T , bK = supT such that (bk−1, bk) ⊂ Bk ⊂ [bk−1, bk] for all
k ∈ [K] := {1, . . . ,K}.

How can the step function structure be exploited to tractably characterize the optimal
mechanisms? [14] refers to a (public signaling) mechanism π as a level mechanism if (i) the
set of signal realizations is [K], and (ii) signal realization k induces a posterior mean in Bk
and a reward of rk. It is straightforward to establish that in the designer’s problem it is
without loss of optimality to restrict attention to level mechanisms. Intuitively this holds
because given a (public) mechanism, a new mechanism can be defined such that when the
signal realization in the original mechanism generates a posterior mean in Bk the signal
realization of the new mechanism is k. It can be readily checked that the latter mechanism
is a level mechanism and is also payoff-equivalent to the initial mechanism.

Denote the set of level mechanisms by ΠL. [14] formulates the designer’s problem over
the level mechanisms as follows:

max
π∈ΠL

∑
k∈[K]

rkP(S = k)

s.t. E[T |S = k]∈Bk for k ∈ [K] such that P(S = k)> 0,

(6)

where S denotes the signal of π.
Observe that a level mechanism π induces a distribution of posterior means: {E[T |S =

k],P(S = k)}. The discussion above implies that the designer’s problem can equivalently be
formulated as an optimization problem over posterior mean distributions. However, not all
posterior mean distributions are relevant, and it suffices to optimize over (atomic) posterior
mean distributions with at most one atom in each Bk. We proceed by providing an equivalent
characterization of the relevant posterior mean distributions which yields a natural convex
optimization formulation for the designer’s problem.

Given a level mechanism with signal S, define a tuple {pk, zk}k∈[K] such that:

(C1) pk = P(S = k)
(C2) zk =E[T ·1{S = k}]

for all k ∈ [K]. Observe that (C2) implies that zk/pk = E[T |S = k] for pk > 0. Thus, by the
definition of level mechanisms we have:

(C3) zk/pk ∈Bk for k such that pk > 0.
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Following [14], we let D denote the set of {pk, zk}k∈[K] tuples that are consistent with a
level mechanism; i.e., for {pk, zk}k∈[K] ∈ D, there exists a level mechanism (with signal S)
such that (C1)–(C3) hold.

[14] establishes a useful representation of the tuples that are consistent with a level mech-
anism:

Theorem 1 ([14]). {pk, zk} ∈D if and only if

(C1’) pk ≥ 0 for k ∈ [K] and
∑
k∈[K] pk = 1,

(C2’) zk/pk ∈Bk for k ∈ [K] such that pk > 0, and zk = 0 for k ∈ [K] such that pk = 0,
(C3’) For `∈ [K], we have ∑

k≥`

zk ≤
∫ 1

1−
∑
k≥` pk

F−1(x)dx, (7)

where the inequality holds with equality for `= 1.

This representation readily gives rise to a two-step reduced form approach for characterizing
optimal mechanisms. In this approach, as opposed to optimizing directly over the mech-
anisms (e.g., deciding on which signal to send at each state), the designer optimizes over
{pk, zk} tuples that satisfy the conditions (C1’)-(C3’). Then, she uses the optimal tuple to
construct a consistent mechanism.

Specifically, in the first step the designer solves the following optimization problem.

max
{pk,zk}k∈[K]

K∑
k=1

pkrk

s.t.
∑
k≥`

zk ≤
∫ 1

1−
∑
k≥` pk

F−1(x)dx for `∈ [K] \ {1},

∑
k

zk =

∫ 1

0

F−1(x)dx,

pkbk−1 ≤ zk ≤ pkbk for k ∈ [K],∑
k

pk = 1,

pk ≥ 0 for k ∈ [K].

(OPT)

The constraints of this optimization problem correspond to (C1’)-(C3’). The only difference
is that for k such that pk > 0 the constraint zk/pk ∈ Bk is replaced with pkbk−1 ≤ zk ≤
pkbk. Recalling that (bk−1, bk)⊂Bk ⊂ [bk−1, bk], it can be seen that the latter constraint is
effectively a relaxation. This relaxation turns out to be immaterial, and optimal solutions
always satisfy (C2’). Given a tuple {pk, zk} consistent with a level mechanism, the objective
of this problem is the expected payoff of the designer under this mechanism.

Observe that (OPT) is a convex optimization problem. It can be readily seen that the
objective as well as the constraints other than the first one are linear. The first one is convex
in the decision variables, since the c.d.f. (as well as its inverse) are non-decreasing functions.

Given an optimal solution to this problem, the next step is to construct a mechanism that
is consistent with the optimal solution. To this end [14] introduces the notion of a laminar
interval partition of the set of states and establishes that if a {pk, zk} tuple satisfies conditions
similar to (C1’)–(C3’), then it is possible to obtain a laminar interval partition of states such
that pk corresponds to the probability with which the state belongs to the kth partition
element, and zk/pk yields the corresponding posterior mean. The formal definition of laminar
interval partitions, and a partition lemma which plays a key role in the construction of an
optimal mechanism, are presented next.
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Definition 1. A collection of sets {Ik}k∈A constitutes a laminar family if for any k, `∈A
either Ik and I` do not intersect (i.e., Ik ∩ I` = ∅) or one contains the other (i.e., Ik ⊂ I` or
I` ⊂ Ik). If, in addition, each Ik ⊂ R is an interval, then we refer to {Ik}k∈A as a laminar
interval family. A partition ∪k∈ATk = T ′ is referred to as a laminar interval partition of T ′
if Tk = Ik \∪`∈A|`>kI` for all k ∈A and some laminar interval family {Ik}k∈A.

Lemma 2 ([14], Partition Lemma). Fix a finite collection {pk, zk}k∈A, where A ⊂
N++ and real numbers q0, q1 ∈ [0,1] satisfying q0 < q1. Suppose that (i) pk > 0 for k ∈A,
and

∑
k∈A pk = q1− q0, (ii) zk/pk is strictly increasing in k ∈A, and (iii) for all ` ∈A we

have ∑
k∈A|k≥`

zk ≤
∫ q1

q1−
∑
k∈A|k≥` pk

F−1(x)dx, (8)

where the inequality holds with equality only for `= minA.
There exists a laminar interval family {Ik}k∈A and sets Tk = Ik \∪`∈A|`>kI` for all k ∈A

such that

(a) I(minA) = ∪k∈AIk, and if |A|> 1, then the end points of the interval F (I(maxA)) are
strictly in between those of F (I(minA)). Moreover, ∪k∈ATk = [F−1(q0), F−1(q1)].

(b) P(T ∈ Tk) = pk for all k ∈A.
(c) E[T |T ∈ Tk] = zk/pk for all k ∈A.

In [14], the partition lemma is established by following an inductive approach. When set
A has cardinality two, the result follows from the intermediate value theorem. In this case,
by solving a single-parameter equation it is possible to obtain an interval for each element
of A such that the interval associated with the largest element of this set is contained
in the interval associated with the smallest one, and taking their differences produces a
partition of the set of states [F−1(q0), F−1(q1)] that is consistent with the {pk, zk}k∈A tuple.
When A has larger cardinality, we group the elements of A other than maxA to construct
another problem instance where the aforementioned set has cardinality two. Then, we use
the partition lemma for this problem instance to obtain an interval for maxA and another
for the elements of A\{maxA}. This reduces the problem to obtaining a consistent partition
of a subset of states to the elements of A \ {maxA}. Proceeding recursively, a partition
to the elements of A is obtained. This approach also yields a simple recursive algorithm
(which relies on repeatedly using the result for the case where A has cardinality two) for
constructing a partition that is consistent with a given tuple {pk, zk}. We refer the reader
to [14] for the details of the algorithm.

Now consider an optimal solution {p?k, z?k} to (OPT). Let {`1, . . . , `m} denote the set of
` for which the first constraint of (OPT) is binding and p?` > 0. Label the elements of this
set such that `1 < `2 < · · ·< `m. For i ∈ [m] define L̄i = {k ∈ {`i, . . . , `i+1 − 1}|pk > 0} and
qi = 1−

∑
k≥`i+1

p?k, where `m+1 =K+1 by convention. The fact that (7) holds with equality

for `∈ {`1, . . . , `m} implies that for `′ ∈ L̄i and i∈ [m], we have∑
k∈L̄i|k≥`′

z?k ≤
∫ qi

qi−
∑
k∈L̄i|k≥`′

p?k

F−1(x)dx, (9)

where the inequality holds with equality only for `′ = min L̄i.
This observation provides a way of constructing a level mechanism consistent with

{p?k, z?k}. First, we identify ` ∈ [K] for which the first constraint of (OPT) is binding and
construct the sets {L̄i}i∈[m]. Then, by using the algorithm outlined above for each set L̄i,
a partition of [F−1(qi−1), F−1(qi)] which contains a set for each element of L̄i is obtained.
Collectively these partitions yield a partition {Tk}k∈[K] of T to the elements of [K]. A mech-
anism which sends signal k when the state belongs to Tk is consistent with {p?k, z?k}, and
hence is optimal.
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Summarizing, by following the approach outlined in this section the designer’s prob-
lem boils down to solving a simple convex optimization problem (OPT). Studying which
constraints are binding at the optimal solution and using a simple recursive algorithm, a
mechanism consistent with the optimal solution is obtained. This approach has three addi-
tional benefits. First, given the convex optimization formulation it is straightforward to do
comparative statics by leveraging tools from sensitivity analysis in convex optimization.
Second, the approach is flexible, and allows for incorporating side constraints. We illustrate
this in Section 4.2 where we allow a receiver to have private information, which necessitates
the mechanism to satisfy additional incentive compatibility constraints. Third, by studying
optimality conditions in (OPT), it is possible to shed light on the structure of an optimal
mechanism. For instance, in [14], it is established that there exist optimal solutions to this
problem such that each set L̄i has cardinality at most two. In this case, the final partition
is obtained by associating an interval with each of the two elements of L̄i and taking their
set differences. Consequently, it follows that each element of the partition {Tk} is a union of
at most two intervals. [11, 14] refer to this as the double-interval structure and establish its
optimality in a wide range of information design problems (see Section 3.1 for an illustration
of this structure). When the designer’s problem has side constraints (e.g., incentive compat-
ibility constraints), L̄i has larger cardinality (which can again be characterized by studying
the optimality conditions in (OPT)). In these cases, richer laminar interval partitions are
required to satisfy the side constraints, and more complicated mechanisms that are based
on this partition structure achieve optimality. We revisit this point in Section 4.2.

3. Applications

We next discuss a few recent papers that study various operational problems through the
lens of information design. In these applications, we consider a designer who tries to influ-
ence the actions of a group of agents. In some of these settings (e.g., when private signals are
employed), the information received by an agent could spill over to others, thereby compli-
cating the designer’s problem. We ignore such spillovers until Section 4.1, where we discuss
the impact of informational spillovers.

3.1. Persuasion in Networks

The literature on social and economic networks sheds light on how the structure of an
underlying network impacts the outcome of the strategic interactions among the agents in
the network. Building on the models from this literature, a number of papers explore how
a firm can make use of the available social network data to improve its pricing/advertising
decisions. For instance, suppose that the firm offers a product that exhibits local network
externalities, i.e., an agent enjoys the product more if her peers also use the same product.
Knowing this a seller can target some agents with appropriate discounts to harvest the
network effects and improve her revenues (see, e.g., [8, 15]). At a high level, these papers use
pricing as a lever to induce a desired outcome at the end of a network game. Information
is another important (and arguably more natural) lever to induce a desired outcome in
social networks. We next discuss two related papers that explore different applications in
operations.

In [16], the authors focus on online social networks, and the agents’ decisions to engage
with the available content (e.g., news articles). The content may contain inaccuracies, and
the social networking platform can send informative signals about the content quality to
influence agents’ engagement decisions. Moreover, agents’ engagement decisions exhibit local
strategic complementarities. That is, if her friends decide to engage with the available con-
tent, agent i receives a larger payoff from engaging with the content. Specifically, the paper
focuses on the following payoff structure:

ui(ai, a−i, t) = ai(v− bt+
∑
j

gijaj),
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where ai ∈ {0,1} captures the engagement decision of agent i. The state realization t mea-
sures how inaccurate the content is: the larger t represents larger content inaccuracy. The
state is assumed to be uniformly distributed in [0, α].

In this model, agent i’s payoff is normalized to zero if she decides not to engage with
the content. Otherwise, her payoff consists of three terms: (i) a constant payoff term v
corresponding to the satisfaction that she (unilaterally) derives from engaging with the
content, (ii) a negative term that captures the disutility that the agent incurs due to engaging
with content that has inaccuracies, and (iii) a network externality term that captures the
additional utility that she derives from engaging with content with which her friends also
engage. The second term depends on the b parameter, which captures the importance of the
state on the agents’ payoff. The last term depends on {gij} parameters which correspond to
the entries of the adjacency matrix. We assume that the underlying network is unweighted
and gij ∈ {0,1}.

The platform commits to a mechanism (e.g., chooses an algorithm that evaluates the
available content) before the content is realized. Once the content is realized this mechanism
reveals informative signals about the quality of the content. In this setting, the platform has
two natural goals. The first one is to maximize engagement, i.e., the number of agents who
take action 1. The second one is to minimize misinformation, i.e., t

∑
i ai. If t is interpreted

as the probability that the content is fake or contains errors, then the latter quantity focuses
on minimizing the total engagement with such content.

In the baseline model, [16] allows for private signaling mechanisms where different agents
receive different signals. Leveraging the straightforwardness idea discussed earlier, the
authors establish that for both objectives mentioned above (as well as their convex combi-
nations) optimal mechanisms always take a simple recommendation structure: if the state
realization is below a threshold ti, the platform recommends agent i to engage with the
content and otherwise she recommends the agent not to engage. Moreover, these thresholds
are chosen so that the agents always find it optimal to follow their recommendation. Note
that this imposes a nontrivial restriction on the thresholds. Suppose that agent i receives
a recommendation to engage. She can infer that the state is in [0, ti] and conditional on
agent i’s signal her connection j receives a recommendation to engage (and follows it) with
probability min{ti, tj}/ti. Thus, the agent i’s expected payoff from engaging is given by:
v − b

2 ti + 1
ti

∑
j gij min{ti, tj}. This quantity should be nonnegative for agent i to engage,

which after rearranging terms can be stated as

t2i ≤
2

b
vti +

2

b

∑
j∈V

gij min{ti, tj}.

A similar constraint can also be derived to ensure that the thresholds are such that agent i
finds it optimal not to engage when the recommendation is not to engage. Imposing these
constraints, we obtain a a simple convex optimization problem whose solution yields the
optimal thresholds:

max
{ti}

1

α

∑
i∈V

ti

s.t. t2i ≤
2

b
vti +

2

b

∑
j∈V

gij min{ti, tj} for i∈ V , (10)

α2− t2i ≥
2

b
v(α− ti) +

2

b

∑
j∈V

gij max{ti, tj}−
2

b
diti for i∈ V , (11)

0≤ ti ≤ α for i∈ V , (12)

where di is the number of connections agent i has.
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14 Information Design in Operations

How are the optimal thresholds related to agents’ network positions? Under mild condi-
tions on the primitives, the first constraint in this problem is binding at the optimal solution.
This allows for an equivalent fixed-point characterization of the optimal thresholds:

ti =
2v

b
+

2

b

∑
j∈V

gij min

{
1,
tj
ti

}
. (13)

This fixed-point equation closely mimics the fixed-point equation that characterizes agents’
Bonacich centralities {κi} in the network (see, e.g., [3]). The latter equation is given by:

κi = 1 + γ
∑
j∈V

gijκj , (14)

where γ is a fixed constant. Intuitively, this fixed-point equation implies that an agent is more
central, if she is connected to more central agents in the network. This feature is also present
in (13). However, in (13), the “contribution” of j to its neighbor i’s centrality is capped at
one and scaled down by ti. Thus, the contribution of an agent to the centrality of a very
central agent is smaller than to that of a less central one. Motivated by these observations,
[16] uses {ti} that solve (13) to define agents’ engagement centrality and concludes that an
engagement maximizing platform chooses larger thresholds for more central agents. This in
turn, implies that on average these agents engage with content that is less accurate.

The structure of the optimal mechanism is illustrated in Figure 1 (adapted from [16]). As
can be seen from this figure, the more central agents receive larger thresholds than the less
central ones.

Figure 1. A Facebook subnetwork with 4,039 nodes. b= 200, v= 20, α= 1. Agents whose thresh-
olds are in the top/bottom %10 are highlighted in red/blue respectively.

What happens, if the platform tries to minimize misinformation? In this case, the struc-
ture of the optimal thresholds is completely different. In particular, it turns out that the
platform chooses identical thresholds for all agents. Moreover, these thresholds are inde-
pendent of the network structure. To understand this intuitively, suppose that the platform
chooses thresholds by ignoring the network effects – which yields identical thresholds for
all agents. Suppose that agents other than i follow the recommendation of the induced
mechanism and they do not engage when the state is above the aforementioned threshold.
Thus, from agent i’s point of view the network effects do not play a role when the state is
larger than the threshold. Hence, she also finds it optimal to follow the recommendation of
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the platform. In other words, the outcome induced by these thresholds in the initial net-
work is identical to the one that would emerge in the absence of network effects. On the
other hand, when network effects are absent the agents engage with content less, and this
results in lower misinformation. Hence, the misinformation obtained in such settings is a
lower bound on what can be achieved in the initial network. This implies that the afore-
mentioned mechanism, obtained by ignoring network effects, is in fact optimal for the initial
network. Moreover, similar results extend to the settings where the platform maximizes a
weighted combination of the engagement and misinformation objectives. In particular, when
the weight of misinformation is large, the network effects can be ignored and in the other
extreme the centralities of agents play a key role in the design of optimal thresholds.

Our discussion so far focused on mechanisms where the designer can send different signals
to different agents. What if she is restricted to using a public signaling mechanism, which
shares the same signal with all the agents? This question is addressed in [11, 12], which
leads to fundamentally different mechanisms.

Here, the agents’ payoffs have structure similar to that specified before. In particular, the
payoff of agent i is given by:

ui(ai, a−i, t) = ai(t+
∑
j

gijaj).

The problem can be cast, as before, in the context of engaging with content that involves
inaccuracies. Alternatively, we can think about a setting where agents decide whether to
adopt a new product that exhibits local network externalities. The quality of the product
(the state) is a priori unknown to the agents and the designer. The designer commits to
a review system which reveals informative signals about the quality of the product once it
is realized. The objective of the platform is to maximize the expected number of adopters.
What are the optimal public signaling mechanisms?

Fix a mechanism π, and let S denote its public signal. Suppose that the designer’s signal
induces a posterior mean of E[T |S = s] and let k denote the smallest integer weakly larger
than −E[T |S = s]. Since all agents have the same posterior mean, it can be seen from the
payoff structure that if there is a set of agents who have k or more connections within
the set, they can guarantee nonzero payoff for all agents in the set by taking action 1.
Furthermore, the maximal such set is the set of agents who take action 1 in the sender-
preferred equilibrium. The aforementioned maximal set is actually an object that is familiar
in graph theory, and it is often referred to as the k-core of the network. Let rk denote the
cardinality of the k-core.

These observations imply that if the posterior mean is in [−k,−k+ 1) the agents in the
k-core take action 1, and this yields a payoff of rk to the designer. In other words, the
designer’s payoff is a step function of the induced posterior mean. Thus, using the framework
in Section 2.5, an optimal mechanism can be obtained. In this mechanism, the designer
partitions the states and associates a partition element with each step of the step function, or
equivalently, with each (distinct) core of the graph. When the state belongs to the partition
element associated with the k-core, the designer reveals this information and the agents in
the k-core find it optimal to take action 1.

Consider the network from Figure 1. Suppose that the state is distributed uniformly in
[−50,0]. The optimal public mechanism exhibits a double-interval structure as discussed
in Section 2.5, and is illustrated in Figure 2. In this figure, we assign a different color to
each possible signal realization (which corresponds to a different core of the underlying
network), and highlight the associated intervals with this color. The figure indicates that
signal realizations that correspond to k ∈ {12,33} cores have two associated intervals. We
also highlight the nodes of the network by assigning to each node the color of a signal
realization. If a node has the color of the signal realization that induces the k-core to take
action 1, then the relevant agent takes action 1 for any signal realization that triggers the
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k=4

k=31

k=12

k=21

k=33

k=43

k=48

Figure 2. The legend on the right illustrates the partition of T = [−50,0] into different signal
realizations/cores. The unlabeled interval at the bottom corresponds to the k-core for k= 49.

k′-core to take action 1 for k′ ≤ k. For instance, red is the color of the signal realization
that corresponds to the k = 33 core, and the nodes of the network that are colored in red
take action 1 whenever the state belongs to the intervals associated with the k′-core for
k′ ≤ 33. Observe that the set of states for which a node takes action 1 need not be convex
(e.g., consider the nodes that belong to the k = 31 core but not to the k = 33 core). This
counter-intuitive behavior is a byproduct of the public signaling restriction and was not
present when we considered the optimal signaling mechanisms where this requirement was
not imposed (the latter mechanisms exhibited a threshold structure).

The discussion so far assumes that the designer knows the network structure. Suppose that
the designer does not know the exact network structure, but has access to limited information
about it such as the degree distribution. Is it still possible to design a public signaling
mechanism that improves the payoff of the designer? The answer, perhaps surprisingly, is
that it is possible to obtain asymptotically optimal mechanisms.

To establish this result, [12] considers a natural random graph model, which we summarize
next. We say that a sequence of nonnegative integers {di}ni=1 is graphical, if there exists
a simple network whose degree sequence matches this sequence.2,3 Consider the set of all
networks with n nodes and a given graphical degree sequence {di(n)}ni=1. In all networks that
belong to this set, node i ∈ [n] = {1, . . . , n} has degree di(n), but the connection structure
among nodes may be different for different elements of this set. We focus on the uniform
distribution on this set of networks, and use Gn to denote the random network obtained
after a draw from this distribution. We are interested in providing results for large networks,
and focus on settings where n→∞. As we conduct our asymptotic analysis, we require the
degree sequence {di(n)}ni=1 to be consistent with an underlying degree distribution {ρl}∞l=0,
i.e., |{i|di(n) = l}|/n→ ρl for every l ∈Z+ as n→∞. Under this assumption, and additional
mild regularity conditions on the degree sequence (many of which are always satisfied when
the degrees are bounded, see [12]), a result of [28] implies that there exists {r̄k} such that
the fraction of nodes that belong to the k-core converges to r̄k in probability as n goes

2 A network is simple if it does not involve any self-loops or multiple edges between any pair of nodes.
3 It is possible to check whether a given sequence is graphical efficiently, e.g., by using the Erdös-Gallai
theorem or the Havel-Hakimi theorem – see [9].

Electronic copy available at: https://ssrn.com/abstract=3666252



Information Design in Operations 17

to infinity. Moreover, r̄k can be obtained by solving an equation whose coefficients depend
on the underlying degree distribution (for settings with bounded degrees this is a simple
polynomial equation).

For network Gn, let π(n) denote a corresponding optimal public mechanism. [12] consid-
ers a variant of (OPT) where some constraints are relaxed. In this problem, attention is
restricted to k such that r̄k is nonzero, and for such k the rk parameter in the objective is
replaced with r̄k (and the constraints are appropriately adjusted). Consider an optimal solu-
tion to this problem, and let π? denote a mechanism consistent with this solution (obtained
by following the approach outlined in Section 2.5). Let A(π,G) denote the designer’s objec-
tive under mechanism π for network G. [12] establishes that

A(π?,Gn)

A(π(n),Gn)

p→ 1,

i.e., the ratio of the performance under the optimal mechanism and the mechanism π?

obtained using only the limiting degree distribution information, converges (in probability)
to 1. In other words, it is possible to construct asymptotically optimal mechanisms by using
only the limiting degree distribution. Furthermore, even when the number of nodes n is
relatively small (e.g., in the order of thousands), [12] illustrates that the gap between the
optimal mechanism and π? is quite small. These observations suggest that even without
the precise knowledge of the network structure, the designer can substantially improve her
payoff by using appropriate mechanisms.

3.2. Signaling Product Availability

In many revenue management settings, the availability of the product offered by a seller has
a first-order impact on the prices as well as the revenues. A strand of the recent literature
(see, e.g., [17] and [34]) focuses on understanding how a seller can signal product availabil-
ity in order to improve her revenues. In this subsection, we discuss some of the relevant
contributions in the literature by focusing on [17].

A product is offered by a seller over two periods to a unit mass of buyers. The buyers’
values follow a known cumulative distribution G(·) and for a given price p, the total demand
of the buyers is given by Ḡ(p), where Ḡ denotes the complementary c.d.f. We assume that G
is absolutely continuous and has a non-decreasing hazard rate.4 The seller does not a priori
know the available inventory, which is qH (qL) with probability P(H) (P(L)). Inventory
becomes available in the beginning of the selling season and cannot be replenished. We
assume that qH = 1 > qL so that there is no shortage in the “high” state but there is
a possibility of shortage in the “low” state. Before the inventory is realized the designer
commits to (i) prices p1, p2 respectively for periods 1 and 2, and (ii) a mechanism that reveals
informative signals to buyers about the available inventory once it is realized. Each buyer’s
strategy maps the observed signal realization to an action in {0,1,2}, where 0 denotes the
decision of not buying and 1 (2) denotes the decision of buying the product in period 1 (2) if
it is available. If demand in a given period exceeds the available inventory, then the product
is rationed (uniformly) among all buyers who demand it. Denote by A`(v) the event that the
agent with value v receives the product if she demands it in period `. The agent’s expected
payoff from taking action a conditional on signal realization s is given by:

1(a∈ {1,2})(v− pa)P(Aa(v)|S = s)

Suppose that the designer does not reveal any information about the available inventory.
Due to inventory uncertainty, the designer can benefit from charging a higher price in the
first period and a lower one in the second period so that in the first period the agents with

4 That is, g(p)/(1−G(p)) is non-decreasing in p, where g is the associated p.d.f.
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higher values purchase the product (without exposing themselves to stockout risk). In the
second period the agents with lower values purchase the product when there is sufficient
inventory. Can the designer further improve the revenues by choosing an appropriate signal-
ing mechanism? If the designer is restricted to using public signals, the answer, surprisingly,
turns out to be negative:

Theorem 2 ([17]). Let pm = arg maxp Ḡ(p)p and suppose that the designer is restricted
to using public signals. Providing no information and setting p1 = P(L) max{Ḡ−1(qL), pm}+
P(H)pm and p2 = pm is an optimal mechanism.

It is worth noting that the optimal mechanism is not unique. In fact, [17] establishes that
another optimal mechanism can be obtained by revealing information about the state fully,
but using different prices.

The conclusions completely change if the designer is allowed to use private signaling
mechanisms. In this case, [17] establishes that the designer can substantially increase her
revenue. The optimal policy also admits a simple structure: The designer identifies two
prices p1 ≥ p2. When the inventory realization is low, she recommends agents whose values
are above p1 to buy (in the first period) and she recommends the remaining agents not
to buy. When the inventory realization is high, she recommends agents whose values are
above p1 to buy (in the first period) with some probability (independently). Note that the
probability of each recommendation depends on the type/value of the buyer, and some
of these agents may receive a recommendation to purchase the product with probability
one whereas others may receive the same recommendation with strictly lower probability.
Agents whose values are between p1 and p2 receive a recommendation to wait. The remaining
agents are recommended not to buy the product (in any of the periods). The aforementioned
randomization is chosen carefully, in a way that makes it incentive compatible for the agent
to follow the recommendation they receive.

An important qualitative takeaway of this paper is that by discriminating agents appro-
priately in terms of the information they have access to, the designer can effectively persuade
them to trade at different prices (in expectation). This form of price discrimination, in turn,
yields a revenue improvement. The extensions of this insight to richer settings, as well as
the interplay between personalized information and prices, are active areas of research.

3.3. Optimal Information Structures in Two-sided Markets

Recent work in operations has also explored the applications of information design ideas to
two-sided markets. Here, we focus on [29] which investigates how a platform where buyers
and sellers trade, can reveal information about the quality of the sellers to influence the
trading outcome. The aforementioned work considers different models of trade between
the buyers and sellers. For brevity, we restrict attention to one of these models where the
platform chooses the prices, and the sellers decide on the quantity to supply to the market.

Assume that there is a unit mass of buyers and sellers. Each seller’s quality belongs to
an interval Ts ⊂R+ and is distributed according to a known distribution Fs. Similarly, each
buyer’s type belongs to an interval Tb ⊂R+, and is distributed according to Fb. The buyers
do not know the sellers’ quality levels.

If a type m ∈ Tb buyer trades with a type q ∈ Ts seller at price p, this yields a payoff of
mq − p to the buyer. Each seller can supply goods to multiple buyers and decides on the
quantity h to supply to the market. If a type q seller manages to produce and sell h units
at price p, then this results in a payoff of

U(q,h, p) = hp− k(q)
hα+1

α+ 1
.

Here, the first term is the seller’s revenue and the second one is her production cost. The
function k captures how the sellers’ production costs depend on their quality levels. It is
also assumed that production costs are convex in the supplied quantity, i.e., α> 0.
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The platform has partial information about the sellers’ quality levels. Specifically, it has
access to a partition {Ak} of Ts and knows to which of the partition elements each seller
belongs. The platform can coarsen this information and share it with the buyers. Specifically,
she can choose a disjoint collection of sets {Bk} such that each element of this collection is
a union of a subset of the elements in {Ak}. {Bk} is referred to as an information structure.
Intuitively, as opposed to providing refined information about the sellers, the platform can
pool some types of sellers together and provide coarser information on them. Importantly,
the union of {Bk} need not be Ts. This corresponds to removing sellers Ts \∪kBk from the
platform altogether.

The platform’s problem is to find an information structure {Bk} and corresponding prices
{p(Bk)} that maximize the total transaction value – which might be relevant, for instance,
when the platform charges for each transaction a commission that is equal to a fraction of the
transaction value. The paper focuses on understanding when simple information structures
that involve (i) banning a group of low quality sellers from the platform altogether and
(ii) not providing any information on the remaining sellers, are optimal. Such information
structures are referred to as 1-separating information structures.

Buyers and sellers take {Bk} and {p(Bk)} as given, and at equilibrium they choose optimal
supply/demand levels. Namely, (a) each seller whose quality belongs to Bk decides on the
optimal amount to supply to the market (assuming she can sell each supplied unit at price
p(Bk)), (b) each buyer forms beliefs about the sellers’ expected qualities (given the sellers’
decisions) and decides on the group of sellers {Bk} to transact with (if any) to maximize
her expected payoff, and (c) the market clears.

Note that the information design problems we have discussed so far involve an uncertain
state of the world, and a designer who commits to sending informative signals about this
state to the receivers. The design problem in [29] has a different flavor. There is no (single-
dimensional) state and given that there is a continuum of sellers the buyers know the mass
of sellers present in the market whose qualities belong to some given set. On the other hand,
they do not know which seller belongs to which quality level, and the platform commits to
providing informative signals about this. The payoff of the platform depends on the sets
of sellers that are pooled together. This is qualitatively similar to our discussion in the
previous sections: the designer pools certain states together, obtains a partition of states,
and reveals to which partition element the realization of the state belongs. The designer’s
payoff function effectively maps each chosen partition to a payoff level.

A key observation in [29] is that a given {Bk} and {p(Bk)} pair yields a menu of price-
expected quality pairs. Thus, the designer’s problem can equivalently be formulated as an
optimization problem over such menus that are consistent with an equilibrium induced by
some information structure and corresponding prices. This reformulation does not directly
allow for solving for the optimal information structures/prices since the set of aforementioned
pairs in general need not admit a crisp characterization. That said, it is still conceptually
useful as the problem reduces to optimizing over menus of prices/quality levels and it is
possible to shed light on the optimal solutions of such problems. Specifically, by leveraging
such a connection the paper establishes that when the buyers’ type distribution is such that
Fb(m)m is convex in m and satisfies an additional technical condition (which is characterized
in the paper) the platform finds it optimal to use a 1-separating information structure.

Note that when the aforementioned convexity assumption does not hold, 1-separating
information structures need not be optimal. It is an interesting research direction to charac-
terize optimal information structures in broader settings and shed light on their structure.

4. Important Extensions

In this section, we revisit some of the key assumptions made in many information design
problems and present recent research related to understanding the challenges that emerge
once these assumptions are relaxed.
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4.1. Informational Spillovers

In many information design problems with multiple receivers it is often assumed that the
designer uses public mechanisms and shares the same signal with all the receivers. An
alternative and also common assumption is that the designer can target different receivers
with different signals but the receivers do not communicate with each other the signals
that they have received. For instance, this assumption was implicitly made in one of the
information design problems studied in Section 3.1. This assumption may be strong for some
applications. How can a designer obtain her mechanisms if there are informational spillovers
among the receivers? [13] provides an answer to this question by characterizing spillover
structures that yield tractable information design problems and by presenting algorithmic
approaches for their characterization. On the other hand, the aforementioned paper also
establishes that the presence of agents who follow multiple information sources can render
the designer’s problem intractable.

Specifically, [13] focuses on a setting where the (continuous) state belongs to an inter-
val T of R, and the designer has access to a finite set of experiments E = [0, . . . , n,n+ 1].
Experiment ` is associated with a threshold t` and reveals whether the state is above this
threshold or not. We assume that inf T = t0 < t1 < · · ·< tn < tn+1 = supT and note that the
experiments 0, n+ 1 almost surely reveal the same signal and hence are uninformative. The
designer chooses which set of experiments Ei ⊂E to assign to each agent i. The same exper-
iment can be assigned to multiple agents. We refer to a collection of experiment assignments
{Ei} as an information structure.

Agents do not observe the state once it is realized, but they observe the outcome of the
experiments assigned to them. Moreover, there are informational spillovers. We denote by
G= (V,A) an underlying directed communication network, and assume that agents corre-
spond to the nodes of this network. A directed arc (i, j) ∈ A represents an informational
spillover from i to j. In addition to the outcome of the experiments in Ei, agent i has access
to the outcomes of all the experiments in Ēi = ∪j∈U(i)Ej ∪ {0, n+ 1}, where we denote by
U(i) the set of agents who have a directed path to i (and include i in this set by convention).
We also include the dummy experiments {0, n+ 1} in Ēi by convention.

Due to the threshold structure, for each agent i a given information structure induces a
partition of the set of states into intervals whose end points belong to {t`}`∈Ēi . Once the
outcomes of the experiments are realized the agent can infer to which interval the state
belongs. Denote by Γ(S) the set of consecutive elements (`1, `2) of S, i.e., `1 < `2 such that
`1, `2 ∈ S and there does not exist `′ ∈ S such that `1 < `′ < `2. It can be seen that agent i
can infer whether the state belongs to [t`1 , t`2 ] but not to a smaller interval if and only if
(`1, `2)∈ Γ(Ēi). We refer to such intervals as minimal intervals.

We assume that the designer’s payoff is additive over the agents, and the minimal inter-
vals available to each agent. Specifically, when agent i infers that the state is in a mini-
mal interval [t`1 , t`2 ] for `1 < `2, this yields a payoff of wi(`1, `2)/p(`1, `2) to the designer,
where wi : E × E → R is an arbitrary function and p(`1, `2) = P(T ∈ [t`1 , t`2 ]). Thus,
under information structure {Ej}, the designer’s expected payoff from agent i is given by∑

(`1,`2)∈Γ(Ēi)
wi(`1, `2). With some abuse of notation we denote the total expected payoff

of the designer by ν({Ej}). Note that this payoff can be expressed as follows:

ν({Ej}) =
∑
i∈V

∑
(`1,`2)∈Γ(Ēi)

wi(`1, `2). (15)

It can be shown that any setting where (i) after observing the outcomes of the experiments,
each agent i takes an action ai to maximize her expected payoff (which depends on her
action and the state), and (ii) the designer’s payoff additively decomposes over the agents
(and is such that the payoff from each agent depends on her action), exhibits this payoff
structure.
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The designer’s problem is to choose an information structure that maximizes her total
expected payoff:

max
{Ej}|Ej⊂E,∀j

ν({Ej}). (16)

Consider a strongly connected component of G= (V,A). By the structure of spillovers, it
follows that all agents in this connected component have access to the same set of exper-
iments. Thus, the designer’s problem can be simplified by replacing each such component
with a single representative agent. Repeating this for all strongly connected components
yields a directed acyclic graph which is known as the condensation of the underlying net-
work G. Thus, the design problem for any network can be reduced to a design problem in
an equivalent directed acyclic network.

Restrict attention to G= (V,A) that is acyclic and directed. Suppose further that each
agent “follows” at most one other agent, i.e., the in-degree of each node is at most one. In
this setting, the undirected network that corresponds to the communication network is a
tree. [13] establishes that in this setting the designer’s problem admits a simple recursive
characterization. The key idea is that conditional on the experiments available to a (repre-
sentative) agent, the problem of the designer in the subtree that originates from that agent
decouples into smaller problems. This suggests a simple dynamic programming recursion to
obtain the optimal information structure in a tractable way.

Suppose that there is at least one agent who follows multiple information sources. Sur-
prisingly, in this case, even when the communication network has a very simple structure
(e.g., a star network where the center follows the leaves), the problem of the designer (or the
corresponding decision problem) is NP-hard. Qualitatively, this result implies that following
multiple information sources is what makes information design problems intractable in the
presence of spillovers.

In settings where the payoffs exhibit special structure the problem may still remain
tractable despite the presence of agents who follow multiple information sources. The paper
explores one such setting and focuses on a “voting game” where receivers take binary actions,
and each agent has incentive to take action 1 when the posterior mean of the state is larger
than an associated threshold. The designer’s payoff is equal to the number of receivers who
take action 1. [13] sheds light on the optimal information structures in the voting game.
It establishes that when the followers are more pessimistic (i.e., when the posterior mean
requirements of downstream agents for taking action 1 are larger) the network structure
does not play any role, and the designer can obtain the optimal information structure by
simply ignoring spillovers. Moreover, the optimal information structure exhibits a certain
monotonicity property (where among the agents on the same directed path those who have
larger posterior mean requirements are assigned to experiments with larger thresholds). On
the other hand, when the followers are more optimistic, the network structure impacts the
optimal mechanisms and such monotone structures need not be optimal. That said, after
restricting attention to monotone (straightforward) information structures, an optimal one
within this class can be obtained in a tractable way as long as the underlying communication
network has bounded treewidth. Treewidth captures how “tree-like” a given network is, and
can be viewed as a measure of how simple a network is. This finding implies that for some
simple payoff structures and communication networks the optimal monotone information
structure can once again be obtained in a tractable way.

Information design with spillovers is an active research area. It is necessary to identify
richer settings where the information design problem remains tractable despite the presence
of spillovers. It is also of interest to understand how the possibility of spillovers impacts
the optimal information structures in practically relevant environments. Finally, in settings
where the designer uses private signals to influence the decisions of multiple receivers (as in
Section 3.2) it is important to study the robustness of the findings when there is (possibly
limited) information spillovers among agents.
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4.2. Privately Informed Receivers

So far we have assumed that the information designer learns all the payoff relevant infor-

mation once the state is realized. In many interesting settings, the receiver may have payoff

relevant information as well (see, e.g., [25, 31]). In this section, we leverage the framework

of [14] (which was presented in Section 2.5) to discuss how to obtain the optimal signaling

mechanisms when the receiver has private information and shed light on the structure of

the optimal mechanisms.

We assume that there is a single receiver, whose type comes from a finite set, denoted by

Θ, and we denote the probability that the receiver is of type θ ∈Θ by wθ > 0. The receiver

chooses her actions from a finite set [K] = {1, . . . ,K}, and her payoff when the kth action

is chosen is given by hθ,k + cθ,k(T − bθ,k). For all θ ∈ Θ, {cθ,k}k∈[K] are parameters that

are strictly increasing in k. Similarly, for all θ ∈ Θ, we set bθ,0 = inf T , bθ,K = supT and

assume that {bθ,k}{0}∪[K] are strictly increasing in k. In addition, for all θ ∈Θ and k <K,

the parameters {hθ,k} satisfy

hθ,k = hθ,k+1 + cθ,k+1(bθ,k − bθ,k+1). (17)

Under condition (17), when the state is T = bθ,k, the type θ receiver is indifferent between

actions k and k+ 1. Thus, it can be readily checked that under our assumptions, the type

θ receiver finds it strictly optimal to take action k when the posterior mean belongs to

(bθ,k−1, bθ,k).

When the receiver chooses action k ∈ [K], and her type is θ ∈Θ, the payoff of the designer

is rθ,k ∈R. We assume that rθ,k 6= rθ,k+1. Under these assumptions for each θ the designer’s

payoff is a step function of the posterior mean her signals induce, with cutoffs at {bθ,k}k
and reward levels {rθ,k}k. We let Bθ,k ⊂T denote the set of posterior means for which type

θ receiver takes action k which in turn yields a reward of rθ,k to the designer, and note that

(bθ,k−1, bθ,k)⊂ Bθ,k ⊂ [bθ,k−1, bθ,k]. We point out that the setup described here generalizes

the one in Section 2.5 to settings with private information.

Before the state or the receiver’s type is realized the designer commits to a direct mech-

anism π, which consists of a menu of signaling mechanisms {πθ}. We assume that for each

θ ∈Θ, πθ is a level mechanism. The receiver reports her type and the designer shares the

realization of the signal of the corresponding mechanism with her. We focus on incentive-

compatible direct mechanisms, where the receiver finds it optimal to report her type truth-

fully. [14] establishes that it is without loss of optimality to focus on such mechanisms.

As in Section 2.5, we can characterize each level mechanism πθ in terms of a corresponding

tuple {pθ,k, zθ,k}. However, now the tuples for different θ ∈ Θ need to be related in order

to ensure incentive compatibility. To see this, given aforementioned tuples (associated with

level mechanisms), for all θ, θ′ ∈Θ, k ∈ [K], define

sθ,θ′,k = max
k′∈[K]

hθ,k′pθ′,k + cθ,k′(zθ′,k − bθ,k′pθ′,k). (18)

Intuitively, sθ,θ′,k/pθ′,k captures the expected payoff of a type θ receiver from reporting her

type as θ′, subsequently receiving signal k, and taking the action that maximizes her payoff

conditional on this signal. Thus, the expected payoff of a type θ agent from reporting her

type as θ′ is given by
∑
k sθ,θ′,k. Using this observation, [14] establishes that the optimal
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mechanism of the designer can be obtained by solving the following variant of (OPT):

max
{pθ,k,zθ,k,sθ,θ′,k}

∑
θ∈Θ

wθ
∑
k∈[K]

pθ,krθ,k

s.t.
∑
k≥`

zθ,k ≤
∫ 1

1−
∑
k≥` pθ,k

F−1(x)dx for θ ∈Θ, `∈ [K] \ {1} ,

∑
k

zθ,k =

∫ 1

0

F−1(x)dx for θ ∈Θ,

hθ,k′pθ′,k + cθ,k′ (zθ′,k − bθ,k′pθ′,k)≤ sθ,θ′,k for θ, θ′ ∈Θ, k, k′ ∈ [K],∑
k∈[K]

sθ,θ′,k ≤
∑
k∈[K]

hθ,kpθ,k + cθ,k (zθ,k − bθ,kpθ,k) , for θ, θ′ ∈Θ,

pθ,kbθ,k−1 ≤ zθ,k ≤ pθ,kbθ,k for θ ∈Θ, k ∈ [K],∑
k∈[K]

pθ,k = 1 for θ ∈Θ,

pθ,k ≥ 0 for θ ∈Θ, k ∈ [K].
(OPT2)

Here, for each θ constraints other than the third and the fourth ensure that the chosen
{pθ,k, zθ,k} tuple is consistent with a level mechanism. The latter constraints ensure incentive
compatibility, i.e., type θ agent maximizes her payoff by truthfully reporting her type as
θ. [14] establishes that by solving this convex optimization problem and constructing a
mechanism consistent with the optimal solution, an optimal mechanism can be obtained.
The paper also outlines an algorithm for the construction of the optimal mechanism, and
sheds light on the structure of this mechanism.

Theorem 3 ([14]). Let {p?θ,k, z?θ,k, s?θ,θ′,k}θ,θ′∈Θ,k∈S denote an optimal solution of
(OPT2). There exists an optimal mechanism π = {πθ} such that for θ ∈ Θ, πθ is a level
mechanism that is based on a laminar interval partition {Tθ,k}k∈[K] and that is consistent
with {p?θ,k, z?θ,k}k. Furthermore, there exists such an optimal mechanism where for θ ∈ Θ,
k ∈ [K], Tθ,k is a union of at most |Θ|+ 1 intervals.

Note that in the absence of private information, |Θ|= 1, and the optimal mechanism has a
double interval structure described earlier. Intuitively, when the receiver has private infor-
mation the partitions that support the optimal mechanism have a more intricate structure.
This is necessary to ensure incentive compatibility. Moreover, it is easy to construct instances
where the incentive compatibility constraints are binding and they have a drastic impact on
the choice of the mechanism of the designer. We refer the reader to [14] for details.

5. Concluding Remarks

In the last decade, there has been substantial interest in information design. The existing
literature has laid the foundation for systematically approaching information design prob-
lems. In addition, the applications of information design in many different settings have been
explored. The purpose of this paper was to provide an overview of the different approaches
that can be used to characterize optimal information structures and present various appli-
cations of information design in the recent operations management literature. In addition,
we discussed key assumptions imposed in information design that need not hold in various
operational settings, and reviewed the recent work that focuses on information design when
such assumptions are violated.

The intersection of information design and operations presents many interesting future
research opportunities. Four broad research directions are worth highlighting. First, as dis-
cussed in the introduction, information is a natural lever in many operational settings includ-
ing service operations, ride-sharing platforms, transportation networks, and e-commerce
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platforms. This paper has reviewed some of the early work in the area. Going forward it
is important to focus on other relevant settings, carefully model the operational details,
and discuss how firms/decision makers can optimally use information to induce a desired
outcome.

Second, other natural levers, such as pricing and admission control, have been widely
studied by the operations community. However, exploring these levers jointly with informa-
tional levers has only recently started to receive attention. As briefly discussed in Section 3.2,
their interplay can be nontrivial. When is choosing an appropriate information structure a
substitute for using operational levers? In which settings do they complement each other? A
thorough exploration of the interplay between different operational levers and information
design presents many research opportunities.

Third, there are important algorithmic challenges in obtaining optimal information struc-
tures. Some of these challenges have received attention in the recent computer science and
operations research literature (see, e.g., [18, 19, 20]). However, more research is needed
especially in settings where the commonly made assumptions in the literature no longer
hold. Some of these environments were discussed in Section 4, and some others (e.g., robust
approaches to information design [22]) are active areas of research.

Lastly, in this paper we mainly focused on static information design environments. Infor-
mation is an important lever in many dynamic settings as well. For instance, a firm can
incentivize agents who arrive over time to experiment with different products (whose quali-
ties are a priori unknown) by employing appropriately chosen information structures (such
as review systems), which, e.g., reveal information about past decisions. Dynamic infor-
mation design investigates how to choose information structures optimally in such settings
and constitutes another active research area [23, 27, 32]. Applications of dynamic informa-
tion design in different operational settings also remain to be an exciting avenue for future
research.
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